skip to main content


Search for: All records

Creators/Authors contains: "Ye, Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ecological Dynamics and Forecasting' is a semester-long course to introduce students to the fundamentals of ecological dynamics and forecasting. This course implements paper-based discussion to introduce students to concepts and ideas and R-based tutorials for hands-on application and training. The course material includes a reading list with prompting questions for discussions, teachers notes for guiding discussions, lecture notes for live coding demonstrations, and video presentations of all R tutorials. This course material can be used either as self-directed learning or as all or part of a college or university course. Individual learners have access to all of the necessary material - including discussion questions and instructor notes - on the website. The course focuses on papers with an open-access or free-to-read version where possible, though some materials still rely on access to closed-access papers. The course is structured around two sessions per week, with most weeks consisting of a one hour paper discussion session and a 1-2 hour session focused on applications in R. R tutorials use publicly available ecological datasets to provide realistic applications. Because the material is organized around content themes, instructors can modify and remix materials based on their course goals and student levels of background knowledge. These course materials have been taught for several years at the authors’ university and have also generated significant online engagement with course videos tens of thousands of times. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Abstract Untangling causal links and feedbacks among biodiversity, ecosystem functioning, and environmental factors is challenging due to their complex and context-dependent interactions (e.g., a nutrient-dependent relationship between diversity and biomass). Consequently, studies that only consider separable, unidirectional effects can produce divergent conclusions and equivocal ecological implications. To address this complexity, we use empirical dynamic modeling to assemble causal networks for 19 natural aquatic ecosystems (N24 ◦ ~N58 ◦ ) and quantified strengths of feedbacks among phytoplankton diversity, phytoplankton biomass, and environmental factors. Through a cross-system comparison, we identify macroecological patterns; in more diverse, oligotrophic ecosystems, biodiversity effects are more important than environmental effects (nutrients and temperature) as drivers of biomass. Furthermore, feedback strengths vary with productivity. In warm, productive systems, strong nitrate-mediated feedbacks usually prevail, whereas there are strong, phosphate-mediated feedbacks in cold, less productive systems. Our findings, based on recovered feedbacks, highlight the importance of a network view in future ecosystem management. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract

    Exploring and accounting for the emergent properties of ecosystems as complex systems is a promising horizon in the search for general processes to explain common ecological patterns. For example the ubiquitous hollow‐curve form of the species abundance distribution is frequently assumed to reflect ecological processes structuring communities, but can also emerge as a statistical phenomenon from the mathematical definition of an abundance distribution. Although the hollow curve may be a statistical artefact, ecological processes may induce subtle deviations between empirical species abundance distributions and their statistically most probable forms. These deviations may reflect biological processes operating on top of mathematical constraints and provide new avenues for advancing ecological theory. Examining ~22,000 communities, we found that empirical SADs are highly uneven and dominated by rare species compared to their statistical baselines. Efforts to detect deviations may be less informative in small communities—those with few species or individuals—because these communities have poorly resolved statistical baselines. The uneven nature of many empirical SADs demonstrates a path forward for leveraging complexity to understand ecological processes governing the distribution of abundance, while the issues posed by small communities illustrate the limitations of using this approach to study ecological patterns in small samples.

     
    more » « less
  7. null (Ed.)